Low-energy Formulations of Support Vector Machine Kernel Functions for Biomedical Sensor Applications

نویسندگان

  • Kyong-Ho Lee
  • Sun-Yuan Kung
  • Naveen Verma
چکیده

Although physiologically-indicative signals can be acquired in low-power biomedical sensors, their accurate analysis imposes several challenges. Data-driven techniques, based on supervised machinelearning methods provide powerful capabilities for potentially overcoming these, but the computational energy is typically too severe for low-power devices. We present a formulation for the kernel function of a support-vector machine classifier that can substantially reduce the real-time computations involved. The formulation applies to kernel functions employing polynomial transformations. Using two representative biomedical applications (EEG-based seizure detection and ECG-based arrhythmia detection) employing clinical patient data, we show that the polynomial transformation yields accuracy performance comparable to the most powerful available transformation (i.e., the radialbasis function), and the proposed formulation reduces the energy by over 2500× in the arrhythmia detector and 9.3-198× in the seizure detector (depending on the patient). The authors thank Dr. A. Shoeb (MGH, MIT, now with WeatherBill) for valuable discussions and algorithm testing support. They also acknowledge the support of the Gigascale Systems Research Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation entity. K. H. Lee (B) · S.-Y. Kung · N. Verma Princeton University, Engineering Quadrangle, Olden Street, Princeton, NJ 08544, USA e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

Parallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers

This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing Systems

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2012